Beiträge zum Jahrbuch der Max-Planck-Gesellschaft

Stabilität, Plastizität und Spezifität im erwachsenen Gehirn
Das Gehirn berechnet aus den Sinnesinformationen ein Bild der Umwelt. Verändern sich die Eingangssignale, zum Beispiel durch eine Verletzung, kann sich das Gehirn anpassen. Im Idealfall kehrt es zu seinem ursprünglichen Aktivitätsmuster zurück, wenn die Störung behoben ist. Neue Ergebnisse zeigen nun, dass Nervenzellen dabei wieder zu ihrem Ausgangszustand zurückfinden und dass diese Plastizität in verschiedenen Gehirnbereichen stattfinden kann. Zudem konnte erstmals gezeigt werden, dass neue Nervenzellen auch im erwachsenen Gehirn funktionell integriert werden. mehr
Dem Lernen auf der Spur
Wissenschaftler beginnen zu verstehen, was im Gehirn passiert, wenn es lernt oder vergisst. Gleich eine ganze Reihe von Entdeckungen zeigt, wie und wo Nervenzellen Kontakte zu Nachbarzellen aufbauen, oder was passiert, wenn der Informationsfluss unterbrochen wird oder nach längerer Pause erneut aufgebaut werden soll. Die Ergebnisse geben Einblick in grundlegende Vorgänge des Gehirns. mehr
Morphologische Plastizität in Neuronen und ihre Konkurrenz um synaptische Proteine
Die Veränderbarkeit neuronaler Signalübertragung ist eine der herausragenden Eigenschaften des Gehirns und wird von Neurobiologen als zelluläre Grundlage für das menschliche Gedächtnis angesehen. Zwei aktuelle Arbeiten aus der Abteilung Zelluläre und Systemneurobiologie haben neue, weit reichende Facetten dieser Veränderbarkeit zu Tage gebracht. Es konnte gezeigt werden, dass die funktionelle Herunterregulierung (Langzeitdepression) von neuronalen Verbindungen oder Synapsen zur Zurückbildung von feinsten Nervenzellausläufern, den so genannten Spines, führt. Da ein Spine (dendritischer Dorn) strukturell den postsynaptischen Teil einer erregenden Synapse bildet, liegt die Vermutung nahe, dass der Verlust von Spines ein morphologisches Korrelat der synaptischen Abschwächung darstellt. In einer weiteren Studie wurde nachgewiesen, dass Synapsen, die umgekehrt zur Depression gemeinsam verstärkt oder potenziert werden, in einen Wettstreit um zelluläre Ressourcen treten: Sinkt die Verfügbarkeit von Proteinen, die für eine andauernde synaptische Verstärkung benötigt werden, führt die Verstärkung einzelner Synapsen zur Abschwächung anderer, vormalig verstärkter Synapsen. mehr
Zelluläre Grundlagen von Lern- und Gedächtnisvorgängen
Das menschliche, ebenso wie das tierische Gehirn muss eine ungeheuer komplizierte Aufgabe erfüllen: Es muss einerseits einen kontinuierlichen Fluss an Sinnesinformationen verarbeiten und andererseits muss es zur gleichen Zeit Erinnerungen, zum Teil für ein Leben lang, speichern und abrufen. Die Transmission von chemischen Botenstoffen zwischen Neuronen erfolgt dabei ebenso an den Synapsen wie das Generieren und Speichern neuer Informationscodes. Welche Mechanismen und welche biochemischen Prozesse aber ermöglichen die Lern- und Gedächtnisvorgänge? mehr
Zur Redakteursansicht