baier.jpg

Genes - Circuits - Behavior

Research overview

All sensory perception and every coordinated movement, as well as feelings, memories and motivation, arise from the bustling activity of many millions of interconnected cells in the brain. The ultimate function of this elaborate network is to generate behavior. We use zebrafish as our experimental model, employing a diverse array of molecular, genetic, optical, connectomic, behavioral and computational approaches. The goal of our research is to understand how neuronal circuits integrate sensory inputs and internal state and convert this information into behavioral responses.

Projects

Connectome of the zebrafish brain

We are mapping the long-range connectivity of the zebrafish brain and address the question of how many discrete neuron types exist.

Connectome of the zebrafish brain: Go directly to Max Planck Zebrafish Brain Atlas

Technologies for circuit interrogation
We devise and adapt a wide variety of technologies to investigate how neural circuits process information and generate behavior.
Molecules, cell types, circuits
We classify neuronal cell types and localize gene expression domains to better understand structure, function and development of the brain.
Vision to action
Specific visual stimulus configurations release particular behaviors. We investigate how visual stimuli are transformed to motor outputs.
Social recognition and affiliation
We study how social interactions emerge from neural computations in individual animals.
Go to Editor View